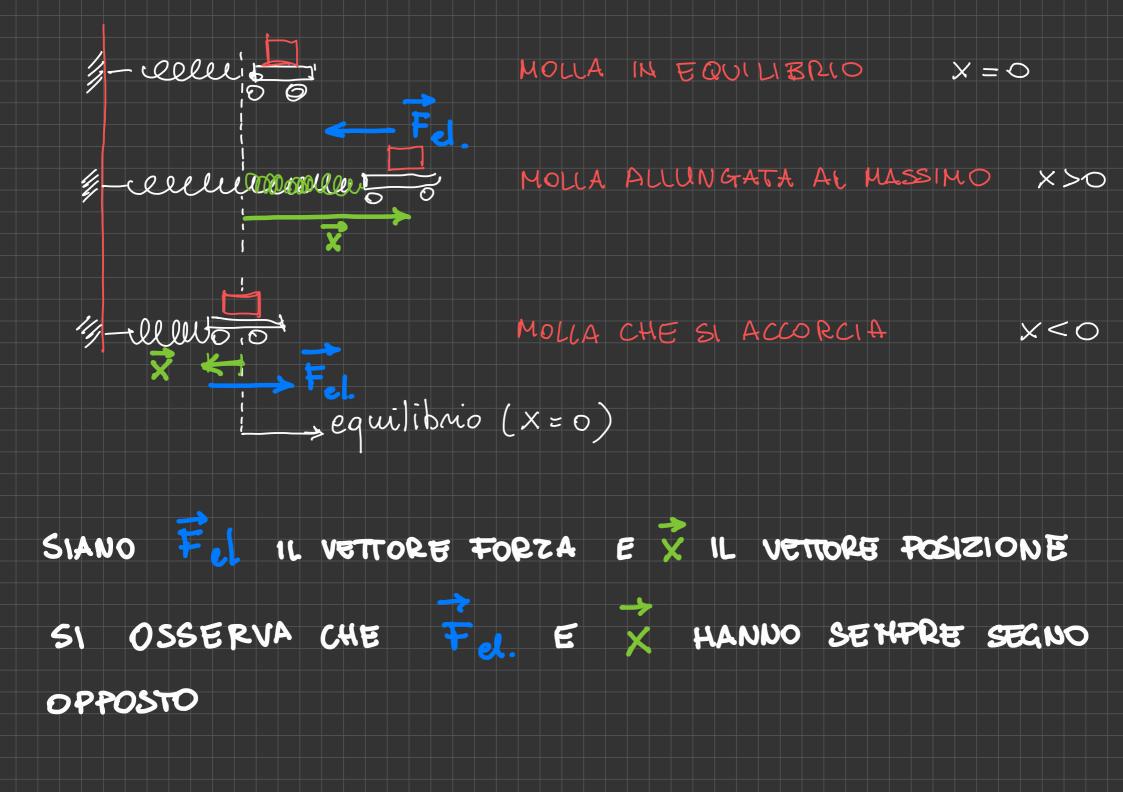

MOTO ARMONICO DI UNA MOLLA

LEZIONI DI FISICA - F3022

COSA ACCADE SE ATTACCHIAMO UNA MASSA AD UNA HOLLA E POI LASCIAMO ANDARE?


FORHULE DEL MOTO ARMONICO

$$x = x_0 \cos(\omega t + \phi_0)$$

 $v = -\omega x_0 \sin(\omega t + \phi_0)$
 $\alpha = -\omega^2 x_0 \cos(\omega t + \phi_0)$
olove $x_0 \in l'$ empiezza massima.

VISTO CHE RIPERCORRERÁ PIÚ VOLTE LA STESSA TRAIETTORIA SI TRATTA DI MOTO ARMONICO.

LA FORZA DI RICHIAMO DELLA MOLLA É LA FORZA ELASTICA DATA DALLA LEGGE DI HOOKE

Allungamento dalla posizione di Equilibrio.

POSSIAMO SCRIVERE IL II PRINCIPIO DELLA DINAMICA

$$F = ma \rightarrow -kx = ma \rightarrow a = -\frac{kx}{m}$$

IL MOTO É ARMONICO, QUINDI Q= -WX UGUAGLIO

$$\frac{1}{2} \frac{k x}{m} = \frac{1}{2} \omega^2 x \qquad \Rightarrow \qquad \omega = \sqrt{\frac{k}{m}} \qquad DA \quad \omega \in \mathbb{R}$$

RICAVARE IL PERIODO T DI OSCILLAZIONE DELLA MOLLA

DI UNA MOLLA

LA MOLLA OSCILLA SU UN PLANO ORIZZONTALE, ALTRI MENTI DOUREMMO TENERE IN CONSIDERAZIONE ANCHE LA FORZA PESO (M·g)

DEFINIZIONE OPERATIVA DELLA MASSA CON IL CARRELLO DELLE MASSE.

due corpi hanno masse uguali se, posti uno alla volta sul carrello, compiono oscillazioni dello stesso periodo.

LA MISURA É INDIRETTA, MISURIAMO UN TEMPO (T) PER POI RICONDURCI AD UNA MASSA

ES:
$$T = 0.34 S$$

$$K = 30 N$$

$$T = 2\pi \sqrt{\frac{M}{K}}$$

$$0.34 \text{ S} = 2.3,14.\sqrt{\frac{m}{30 \text{ m}}} \rightarrow \frac{0.34 \text{ S}}{6.28} = \sqrt{\frac{m}{30 \text{ m}}}$$

$$m = (0.054)^2 \cdot 30 = 879$$